the column states " $\mathrm{ST}+1$ ", while if CN is a strong pseudoprime to the base p but (*) does not hold, the column states " $\mathrm{ST}-1$ ".

Col. 13 lists the number (3 through 7) of prime factors in CN , and Col . 14 gives the factorization of CN . The reviewer easily checked that the three Carmichaels $<25 \cdot 10^{9}$ that are "acceptable Perrin composites" [1] are in the table as CN \#1353, \#1375 and \#2142. But the fourth Carmichael that is an acceptable Perrin composite is beyond this table, since it equals $43234580143=$ $223 \cdot 5107 \cdot 37963$. See the next review.

D. S.

1. G. C. Kurtz, Daniel Shanks, and H. C. Williams, Fast primality tests for numbers less than $50 \cdot 10^{9}$, Math. Comp. 46 (1986), 691-701.
2. Carl Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr., The pseudoprimes to $25 \cdot 10^{9}$, Math. Comp. 35 (1980), 1003-1026.
3. Daniel Shanks, Solved and unsolved problems in number theory, 3rd ed., Chelsea, New York, 1985.

22[11A15, 11Y55].-Gerhard Jaeschke, Table of all Carmichael numbers <

 $10^{12}, 2.1$ computer output sheets deposited in the UMT file.This table of the 8238 Carmichael numbers $(\mathrm{CN})<10^{12}$ was placed in the UMT file in connection with the paper [1]. They are listed 395 per page in five columns and 79 rows. No other information is given; compare the elaborate detail in the previous review. Thus, even to determine that 43234580143, which is mentioned in the previous review, is CN \#2652, requires a moderate effort. The present table, therefore, supersedes Wagstaff's table only in part.

Three points about [1] may be mentioned here. A CN may be defined as a number that satisfies

$$
a^{\mathrm{CN}} \equiv a(\bmod \mathrm{CN})
$$

for all integers a. This is both simpler and more general than the definition given in [1]. Even a casual glance at the table shows that most (?) of the CN end in the decimal digit 1 . This has long been known. In [1], the CN are analyzed $(\bmod 12)$ but not $(\bmod 10)$. Swift's earlier UMT table of the $646 \mathrm{CN}<10^{9}$ has an "Author's summary" [2] wherein CN that are products of three primes are also analyzed.

As submitted, each page of the present table had a two-inch solid black band at the top of the page. After determining that there was no information here, the reviewer boldly sliced off this top with a paper trimmer. This (a) reduced the space requirement of the table in the UMT file and (b) enabled the reviewer to appropriately celebrate the 200th anniversary of the French Revolution.

[^0]
[^0]: D. S.

 1. Gerhard Jaeschke, The Carmichael numbers to 10^{12}, Math. Comp. 55 (1990), 361-367.
 2. J. D. Swift, Table of Carmichael numbers to 10^{9}, Review 13, Math. Comp. 29 (1975), 338-339.
